
Key Advantages of Test Distribution Relative to 
Alternative Approaches
A good way to understand the advantages of Test Distribution is to understand the limitations of 
alternative approaches to test parallelization:

No parallelism

Not being able to parallelize your tests is a serious 
constraint which will become more and more costly as your 
test base grows, ultimately resulting in test times that take 
an order of magnitude longer to run compared to modern 
test distribution solutions.

 The size of a test set tends to grow along with its 
associated project, with very large or complex 
applications spending the majority of their time in the 
test phase of the build.

 Without a plan for parallelization of tests, test feedback 
cycle times will increase continuously as more tests are 
added to the set.

 New tests are necessary when new features are added, 
and though Test Impact Analysis can help to reduce the 
test set executed during each build, there are many 
scenarios where running tests is unavoidable.

CI Fanout

CI fanout achieves parallel execution by creating multiple CI 
jobs per build, where each CI job runs on a subset of the 
tests on a different agent. While valuable when compared 
to not leveraging any form of test distribution, CI fanout has 
many disadvantages:

 There is no aggregate test reporting since test reports 
are separated per agent.

 There is no efficient load balancing across agents as test 
partitioning must be done manually.

 Significant CI administrative overhead may result from 
running tens or hundreds of CI jobs for the same logical 
build step.

 Debugging is inefficient since the same builds are run 
many times, each generating its own build log.

 Feedback cycles and resource consumption may be 
negatively impacted by the necessity to run full builds 
per agent.

 CI fanout only works on CI. As a result, a pull-request 
has to be created just to get fast feedback on tests, 
negatively impacting developer productivity and the 
developer experience.

Single-machine parallelism

Single-machine parallelism often results in a significant 
acceleration, but is limited by the number of parallel forks, 
which is dictated by a machine’s CPU and memory 
resources. This has several implications:

 Tests that consume a lot of local developer machine 
resources become unavailable for other tasks.

 Organizations invest in expensive, powerful machines to 
run CI agents and improve test execution time, resulting 
in massively underutilized machine capacity. As soon as 
a CI build starts, CI machine resources are fully 
dedicated to CI builds and are not available for other 
jobs.

 Resource sharing conflicts often result since single-
machine parallelism may dictate running tests in 
multiple local JVMs to avoid interfering with each other. 
They share the same file system and often the same 
“process space” so servers started from tests need to 
use different ports.

Modern Test Distribution (TD)

Modern fine-grained and transparent TD solutions offer 
many advantages:

 TD is available for all local and CI builds regardless of 
where invoked (e.g., local command line, IDE).

 There is no change to the developer workflow since 
tests are run automatically in a distributed and 
transparent manner, instead of run locally.

 The CI user experience is better compared to CI fan out 
since there is only one build invocation and CI job. If 
properly implemented, test report aggregation happens 
as if all tests are run on one agent. There is only one 
build log.

 Resource consumption is dramatically reduced since the 
prerequisite build steps for running tests run only once.

 Reliability is increased since efficient fine-grained 
distribution allows for sequential execution of tests per 
agent.

 TD history and dynamic scheduling services can be used 
to balance the test execution load properly and 
elastically between test agents and optimize test 
execution time and compute resource consumption.

 To maximize available resources, TD supports local test 
execution fallback if no remote test agents are available 
or an optional hybrid local/remote execution mode.


